Cytomegalovirus Infection of the Rat Developing Brain In Utero Prominently Targets Immune Cells and Promotes Early Microglial Activation

نویسندگان

  • Robin Cloarec
  • Sylvian Bauer
  • Hervé Luche
  • Emmanuelle Buhler
  • Emilie Pallesi-Pocachard
  • Manal Salmi
  • Sandra Courtens
  • Annick Massacrier
  • Pierre Grenot
  • Natacha Teissier
  • Françoise Watrin
  • Fabienne Schaller
  • Homa Adle-Biassette
  • Pierre Gressens
  • Marie Malissen
  • Thomas Stamminger
  • Daniel N. Streblow
  • Nadine Bruneau
  • Pierre Szepetowski
چکیده

BACKGROUND Congenital cytomegalovirus infections are a leading cause of neurodevelopmental disorders in human and represent a major health care and socio-economical burden. In contrast with this medical importance, the pathophysiological events remain poorly known. Murine models of brain cytomegalovirus infection, mostly neonatal, have brought recent insights into the possible pathogenesis, with convergent evidence for the alteration and possible involvement of brain immune cells. OBJECTIVES AND METHODS In order to confirm and expand those findings, particularly concerning the early developmental stages following infection of the fetal brain, we have created a model of in utero cytomegalovirus infection in the developing rat brain. Rat cytomegalovirus was injected intraventricularly at embryonic day 15 (E15) and the brains analyzed at various stages until the first postnatal day, using a combination of gene expression analysis, immunohistochemistry and multicolor flow cytometry experiments. RESULTS Rat cytomegalovirus infection was increasingly seen in various brain areas including the choroid plexi and the ventricular and subventricular areas and was prominently detected in CD45low/int, CD11b+ microglial cells, in CD45high, CD11b+ cells of the myeloid lineage including macrophages, and in CD45+, CD11b- lymphocytes and non-B non-T cells. In parallel, rat cytomegalovirus infection of the developing rat brain rapidly triggered a cascade of pathophysiological events comprising: chemokines upregulation, including CCL2-4, 7 and 12; infiltration by peripheral cells including B-cells and monocytes at E17 and P1, and T-cells at P1; and microglia activation at E17 and P1. CONCLUSION In line with previous findings in neonatal murine models and in human specimen, our study further suggests that neuroimmune alterations might play critical roles in the early stages following cytomegalovirus infection of the brain in utero. Further studies are now needed to determine which role, whether favorable or detrimental, those putative double-edge swords events actually play.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The impact of COVID-19 during pregnancy on fetal brain development

The development of the brain as the most complex structure of the human body is a long process that begins in the third week of pregnancy and continues until adulthood and even until the end of life (1). Human brain myelination begins one to two months before birth in the visual system and eventually lasts until the age of two in other sensory systems and then the motor systems (4). Processes a...

متن کامل

P 115: Potential Therapeutic Targets Related to Neuroinflammation in Treatment and Prevention of Autism

Autism spectrum disorder (ASD) is a mental condition, present from early childhood, characterized by great difficulty in communicating and forming relationships with others and using language. In the last four decades many studies have shown that immune responses in different regions of brain play an important role in ASD pathogenicity. A conservative estimate based on the research suggests tha...

متن کامل

P 108: Evaluation of Calcineurin Role in Neuroinflmmation: Possible Targets for Early Detection and Treatment

Calcineurin (CaN) is a Ca2+/calmodulin (Ca2+/CaM)-dependent serine/threonine protein phosphatase expressed in most mammalian tissues but found at higher concentration in brain. In the last decade there have been a steadily increasing number of studies identifying neuronal CaN as a primary suspect in neuronal vulnerability, synapse loss, dendritic atrophy, synaptic dysfunction and neuroinflammat...

متن کامل

Microglial Activation in Rat Experimental Spinal Cord Injury Model

Background: The present study was designed to evaluate the secondary microglial activation processes after spinal cord injury (SCI). Methods: A quantitative histological study was performed to determine ED-1 positive cells, glial cell density, and cavitation size in untreated SCI rats at days 1, 2, and 4, and weeks 1, 2, 3, and 4. Results: The results of glial cell quantification along the 4900...

متن کامل

Modulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells

Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. Thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016